
04C: Diffusion and the Deformation-Mechanism   

Overview 
So far we have considered the phenomenological equation for time dependent deformation at high temperature which is 

given by 

       (1) 

The equation represents how the strain rate ( ) varies with stress ( ), the grain size ( ), and temperature .  

In this section (04C) we will discuss the temperature dependent activation energy term from an atomistic point of view. 

The atomistic point of view recognizes that mass must be transported through the polycrystal in order to change its shape. 

this concept requires two elements 

i. What is the pathway (s) - in other words the geometry of the flow lines - for the transport of atoms which can 

accomplish a change in the shape of a polycrystal? 

ii. What is the fundamental mechanism for the movement of atoms? 

The Geometry of Flow Lines for Mass Transport to 
Achieve Change in Shape 
The Unit Problem: Deformation of a polycrystal can be analyzed by considering the deformation of one crystal within the 

polycrystal as shown  
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The strain is one crystal, shown in red, is also the strain in the whole polycrystal, as it is measured in the laboratory. We may 

now consider deformation in a one crystal as a unit problem for analyzing high temperature deformation in a polycrystal. 

 

As shown on the right when a tensile stress is applied to the crystal. The 

crystal can elongate in the tensile direction by the transport of atoms from 

the sides of the crystal to face across which the tensile stress has been 

applied.  

The schematic on the right shows entire layers of atoms moving from the 

side to the top. Let us consider strain that will be produced if one atom 

layer were to be transported from each side face (there are four of them) of 

the cube to the top face (there are two of them). Let us assume that the 

area of each face is equal to , where is the grain size. The change in 

the length of the crystal for the transport of one layer from the side to the 

top will be equal to  where  is the atom size which is equal 

to the thickness of one atom layer.  

Therefore, the strain for the etching of one atom layer from each of the 

sides and plating it on the top face of the crystal would be 

       (2) 

The factor of 4/2 arises because the source of the atoms are the four side faces while the atoms are plated on to just two 

faces. 

Atom by atom transport of the layers 

Now consider that atoms are transported one at a time as shown on the right, 

The question is what would be the strain if just one atom, instead of a whole 

layer is transported across the crystal 

The weighting factor would be   

The denominator is equal to  (note that it is dimensionless) 

Therefore, the weighting factor is .  
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The strain in Eq. (1) now becomes 

 

Diffusion, the Mechanism of Mass Transport 
There are two fundamental issues related to the model presented just above: (i) how can atoms be etched and plated at grain 

boundaries, and (ii) what are the paths for the transport of atoms. The first is related to the peculiarity of the structure of 

grain boundaries.  

Grain Boundaries as the Source and Sink for Atoms 
 

 

The structure of grain boundaries is illustrated by the schematic on the left and the high-resolution image obtained from 

transmission electron microscopy on the right. Note how the crystals extend into the grain boundary in the form of ledges. 

While these ledges can have different configurations, in all instances they provide sites where atoms can be added or 

removed. 

• If the atoms are added to the ledges the crystals "grow" and they move apart to accommodate this growth 

• If the atoms are etched from the ledges the crystals shrink and the crystal move towards each other 

       (2) 

The quantity in Eq. (2) is the strain that would be achieved if one atom from each of the side faces were to be transported 

to the face across which the tensile stress has been applied. 
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The above statements are explicitly described by the schematic given below 

 

In this schematic, atoms marked by a cross are etched out of the grain boundary (and transported to 

the transverse boundary). This removal of these atoms is then accommodated by the two crystals 

moving closer to one another. The opposite would happen if atoms were to be inserted into the grain 

boundary - that would cause the crystal to move apart by rigid body motion.  

 

It should now be self-evident how the crystals can shrink in the lateral direction and grow in the 

transverse direction (in the direction of the applied tensile stress) by the etching and plating of atoms 

as described above.  

 

Grain Boundary and Lattice (or Volume) Diffusion 
Mass transported across the crystal by atom jumps, also called solid-state diffusion (sometimes called self-diffusion to 

distinguish it from transport of impurity atoms - as for example in doping of silicon). 

The flow lines for atom transport can travel though the matrix of the crystal or along the grain boundaries as shown below 
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Therefore, there are two paths for mass transport: (i) volume diffusion through the crystal matrix, and (ii) grain boundary 

diffusion through the crystal matrix. They are given the nomenclature: 

 and   

They have units of m2s–1, that is, length squared per second.  

The Diffusion Mechanism 
Let us consider the boundary diffusion mechanism (similar ideas apply for volume diffusion, but that is deferred for the 

present). 

Diffusion involves three essential features: 

i. Each jump occurs in some unit of time, we call it the jump frequency: it is 

described as  jumps per second. 

ii. The jump is discreet; it spans a distance that is approximately equal to the 

interatomic distance   

iii. In the absence of a "driving force" the atoms make jumps in random 

directions as shown below 

Note that the atom jumps have to overcome an energy barrier; this is described as 

an activation energy,  and the jump frequency is written as 
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The concept here is that the atoms vibrate in place (that is in their native position) with a frequency  s–1, while the 

probability of an "atom jump" is equal to thus native frequency multiplied by the probability of overcoming the activation 

barrier given by . 

Without going through the formal analysis, it can be shown that the coefficient of diffusion for mass transport in the solid-

state is given by 

       (4) 

•The factor of 6 comes from the three-dimensional possibilities of diffusion, that is, the jump is equally probable in six 

directions.  

•Note that the units for the diffusion coefficient are m2s–1, or early on in CGS units cm2s–1.  

ªThe diffusion coefficient may not be expressed as 

 , where       (5) 

Approximately it the pre-exponential has a value of about 1 cm2s–1 or 10–4 m2s–1. 

The form of the diffusion coefficient is the same for volume or boundary diffusion so that we can write 

     and      (6) 

Note that the activation energy for boundary diffusion is different than the activation energy for volume diffusion. 

It is perhaps "intuitively obvious" that   

In fact, in metals the following empirical relationship is found 

        (7) 

Additive Nature of Volume and Boundary Diffusion 

    (8) 

The key feature of the strain rate equation (Eq. 1) is that the activation energy in that equation is specifically related to the 

coefficient of solid-state diffusion since the temperature dependence of the strain rate equation can only be related to the 
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coefficient of solid-state diffusion (again recall the separation of variables in the strain rate equation in stress dependent 

term, grain size dependent term and temperature dependent term). 

Dominance of Grain Boundary and Volume Diffusion in the Temperature Regime 

We take note from the figure above, which is repeated here on the right that volume and 

boundary diffusion are additive mechanisms for the strain rate since they are parallel paths for 

diffusion.  

The interesting point is that the difference in the activation energy for these two diffusion paths 

(the activation energy is lower for boundary diffusion) leads to the interesting result that is 

displayed in the Arrhenius plot that shows both terms 

 

In the Arrhenius plots on the right, boundary diffusion is drawn with a lower 

slope that volume diffusion since .  

•Note that the relative magnitudes of boundary and volume diffusion switches 

with temperature. At higher temperature the volume diffusion term is larger 

while the boundary diffusion component is larger at the lower temperature. This 

switch is simply graphical - it is a consequence of the lower activation energy 

for boundary diffusion.  

•Because of the logarithmic scale the sum of the two mechanisms quickly 

becomes dominated by the faster mechanism, that is the sum is essentially equal 

to the rate from the faster mechanism. 

As we shall see experimental data for the strain rate plotted Arrheniusly may 

show this transition which helps to distinguish between the volume and boundary diffusion mechanisms.  

Note: As you will note from the diffusion data for copper given in Problem 04C begins to show this transition from volume 

to boundary diffusion at lower temperature. (Note that the strain rates and diffusion coefficients follow the same relative 

behavior in the Arrhenius plots because of their similar dependence on activation energy. The preexponential shifts the 

curves up or down but does not change their slopes. We may or may not see this transition in the plots for the strain rates 

since the vertical position of the lines may preclude the measurement of this transition - that is, it may be outside the regime 

of experimental data). 
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